424 research outputs found

    Tailoring temporal description logics for reasoning over temporal conceptual models

    Get PDF
    Temporal data models have been used to describe how data can evolve in the context of temporal databases. Both the Extended Entity-Relationship (EER) model and the Unified Modelling Language (UML) have been temporally extended to design temporal databases. To automatically check quality properties of conceptual schemas various encoding to Description Logics (DLs) have been proposed in the literature. On the other hand, reasoning on temporally extended DLs turn out to be too complex for effective reasoning ranging from 2ExpTime up to undecidable languages. We propose here to temporalize the ‘light-weight’ DL-Lite logics obtaining nice computational results while still being able to represent various constraints of temporal conceptual models. In particular, we consider temporal extensions of DL-Lite^N_bool, which was shown to be adequate for capturing non-temporal conceptual models without relationship inclusion, and its fragment DL-Lite^N_core with most primitive concept inclusions, which are nevertheless enough to represent almost all types of atemporal constraints (apart from covering)

    DL-lite with attributes and datatypes

    Get PDF
    We extend the DL-Lite languages by means of attributes and datatypes. Attributes -- a notion borrowed from data models -- associate concrete values from datatypes to abstract objects and in this way complement roles, which describe relationships between abstract objects. The extended languages remain tractable (with a notable exception) even though they contain both existential and (a limited form of) universal quantification. We present complexity results for two most important reasoning problems in DL-Lite: combined complexity of knowledge base satisfiability and data complexity of positive existential query answering

    A cookbook for temporal conceptual data modelling with description logic

    Get PDF
    We design temporal description logics suitable for reasoning about temporal conceptual data models and investigate their computational complexity. Our formalisms are based on DL-Lite logics with three types of concept inclusions (ranging from atomic concept inclusions and disjointness to the full Booleans), as well as cardinality constraints and role inclusions. In the temporal dimension, they capture future and past temporal operators on concepts, flexible and rigid roles, the operators `always' and `some time' on roles, data assertions for particular moments of time and global concept inclusions. The logics are interpreted over the Cartesian products of object domains and the flow of time (Z,<), satisfying the constant domain assumption. We prove that the most expressive of our temporal description logics (which can capture lifespan cardinalities and either qualitative or quantitative evolution constraints) turn out to be undecidable. However, by omitting some of the temporal operators on concepts/roles or by restricting the form of concept inclusions we obtain logics whose complexity ranges between PSpace and NLogSpace. These positive results were obtained by reduction to various clausal fragments of propositional temporal logic, which opens a way to employ propositional or first-order temporal provers for reasoning about temporal data models

    Temporalising OWL 2 QL

    Get PDF
    We design a temporal description logic, TQL, that extends the standard ontology language OWL2QL, provides basic means for temporal conceptual modelling and ensures first-order rewritability of conjunctive queries for suitably defined data instances with validity time

    Temporal description logic for ontology-based data access

    Get PDF
    Our aim is to investigate ontology-based data access over temporal data with validity time and ontologies capable of temporal conceptual modelling. To this end, we design a temporal description logic, TQL, that extends the standard ontology language OWL2QL, provides basic means for temporal conceptual modelling and ensures first-order rewritability of conjunctive queries for suitably defined data instances with validity time

    Polynomial conjunctive query rewriting under unary inclusion dependencies

    Get PDF
    Ontology-based data access (OBDA) is widely accepted as an important ingredient of the new generation of information systems. In the OBDA paradigm, potentially incomplete relational data is enriched by means of ontologies, representing intensional knowledge of the application domain. We consider the problem of conjunctive query answering in OBDA. Certain ontology languages have been identified as FO-rewritable (e.g., DL-Lite and sticky-join sets of TGDs), which means that the ontology can be incorporated into the user's query, thus reducing OBDA to standard relational query evaluation. However, all known query rewriting techniques produce queries that are exponentially large in the size of the user's query, which can be a serious issue for standard relational database engines. In this paper, we present a polynomial query rewriting for conjunctive queries under unary inclusion dependencies. On the other hand, we show that binary inclusion dependencies do not admit polynomial query rewriting algorithms

    The complexity of clausal fragments of LTL

    Get PDF
    We introduce and investigate a number of fragments of propositional temporal logic LTL over the flow of time (ℤ, <). The fragments are defined in terms of the available temporal operators and the structure of the clausal normal form of the temporal formulas. We determine the computational complexity of the satisfiability problem for each of the fragments, which ranges from NLogSpace to PTime, NP and PSpace

    Weak solutions to Allen-Cahn-like equations modelling consolidation of porous media

    Get PDF
    We study the weak solvability of a system of coupled Allen–Cahn–like equations resembling cross–diffusion which is arising as a model for the consolidation of saturated porous media. Besides using energy like estimates, we cast the special structure of the system in the framework of the Leray–Schauder fixed point principle and ensure this way the local existence of strong solutions to a regularised version of our system. Furthermore, weak convergence techniques ensure the existence of weak solutions to the original consolidation problem. The uniqueness of global-in-time solutions is guaranteed in a particular case. Moreover, we use a finite difference scheme to show the negativity of the vector of solutions. Keywords: Weak solutions; cross–diffusion system; energy method; Leray–Schauder fixed point theorem; finite differences; consolidation of porous media

    Tractable interval temporal propositional and description logics

    Get PDF
    We design a tractable Horn fragment of the Halpern-Shaham temporal logic and extend it to interval-based temporal description logics, instance checking in which is P-complete for both combined and data complexity
    • …
    corecore